Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Class 10 Chapter 8 Introduction of Trigonometry Exercise 8.1


Q1.

In ABC, right-angled at B, AB=24 cm, BC=7 cm. Determine:

(i)sinA,cosA

(ii)sinC,cosC

Ans.

 

Given: In ABC 
B=900
AB=24 cm
BC=7 cm
AC be the hypotenuse
By using Pythagoras Theorem:
AC2=AB2+BC2
AC2=242+72
AC2=576+49
AC2=625cm2
AC=625=25
Therefore, AC=25cm
(i) sin(A), cos(A):
sin(A)=Opposite sideHypotenuse=BCAC=725
cos(A)=Adjacent sideHypotenuse=ABAC=2425
(ii) sin(C), cos(C):
sin(C)=Opposite sideHypotenuse=ABAC=2425
cos(C)=Adjacent sideHypotenuse=BCAC=725

Q2.

In Fig. 8.13, find tanPcotR.

Ans.

 Given: In given PQR 

Q=900
PQ=12 cm
PR=13 cm
By using Pythagoras Theorem:
PR2=QR2+PQ2
132=QR2+122
169=QR2+144
169144=QR2
QR2=25
QR=25=5
Therefore, QR=5cm
tanP=opposite side toPAdjacent side toP=QRPQ512..........(i)
tanR=opposite side toRAdjacent side toR=PQQR125..........(ii)
We know that cotR is reciprocal of tanR, so
cotR=1tanR
Putting value of tanR from equation (ii)
cotR=1125=512.......(iii)
Thus, 
tanPcotR
Putting value from equation (i) and (iii)
=512512=0

Q3.

IfsinA=34, calculate cosA and tanA.

Ans.


Given: In given ABC 

B=900
sinA=Opposite side to AHypotenuse=BCAC=34
Let
BC=3k
AC=4k
By using Pythagoras Theorem:
AC2=AB2+BC2
4k2=AB2+3k2
16k2=AB2+9k2
16k29k2=AB2
AB2=7k2
AB=7k2=7k
Therefore, AB=7
cosA=Adjacent side of AHypotenuse=ABAC=7k4k=74
tanA=Opposite side of AAdjacent side ofA=BCAB=3k7k=37
Alternative Method:
If sinA=34, we can use the Pythagorean identity to find cosA and then use the definition of tanA.
The Pythagorean identity is given by:
sin2A+cos2A=1
cos2A=1sin2A
By putting sinA value:
cos2A=1(34)2
cos2A=1(916)
cos2A=716
cosA=±74
Since, sinA is positive and cosA is in the same quadrant as sinA, we take the positive root.
cosA=74
As we know that
tanA=sinAcosA
by putting value
tanA=3444
tanA=34×47
tanA=37

Q4.

Given 15cotA=8, find sinA and secA.

Ans.


Given: 15cotA=8
cotA=815
We know that 
tanA=1cotA
By putting cosA value
tanA=1815=158
So,
tanA=Opposite side of AAdjacent side of A=158
For find AC (Hypotenuse) we use Pythagoras Theorem:
AC2=AB2+BC2
AC2=8k2+15k2
AC2=64k2+225k2
AC2=289k2
AC=17k
Therefore, AC=17k
sinA=Opposite side to AHypotenuse=BCAC=15k17k=1517
cosA=Adjacent side to AHypotenuse=ABAC=8k17k=817
We know that-
secA=1cosA=1817=178

Q5.

Given secθ=1312, calculate all other trigonometric ratios.

Ans.

Given: secθ=1312
We know that 
cosθ=1secθ
By putting secθ value
cosθ=11312=1213
We also know that Pythagorean identity is:
sin2θ+cos2θ=1
By putting cosθ value
sin2θ+(1213)2=1
sin2θ=1144169
sin2θ=25169
sinθ=±513
Since, secθ>0 in the given expression and sinθ is positive. so,
sinθ=513
The other trigonometric ratios are:
tanθ=sinθcosθ=5131213=512
cotθ=1tanθ=1512=125
cosecθ=1sinθ=1513=135
secθ=1312 given

Q6.

If A and B are acute angles such that cosA=cosB, then show that A=B.

Ans.

Given : A and B are acute angles.
cosA=cosB
We have to show that A=B.
In right angle ABC
cosA=AdjacentsidetoAHypotenuse=ACAB
cosB=AdjacentsidetoBHypotenuse=BCAB
As per given that cosA=cosB
Therefore, 
ACAB=BCAB
Cross multiply
AC×AB=BC×AB
divide both side by AB, we get
AC=BC
Because both ratios are equal, then the lengths of AC and BC are the equal and ABC is a Isosceles triangle, then angles opposite those equal sides would be equal. So,
A=B
Alternative solution:

Let's take a triangle ABC in which CP ┴ AB
As per given
cosA=cosB
APAC=BPBC
APBP=ACBC
Let APBP=ACBC=x
Then,
AP=x.BP............(i)
AC=x.BC............(ii)
By using Pythagoras theorem, we get
From CAP
AC2=AP2+CP2
CP2=AC2AP2........(iii)
From CBP
BC2=BP2+CP2
CP2=BC2BP2.........(iv)
from equatio (iii) and (iv), we get
AC2AP2=BC2BP2
Putting value from (i) and (ii)
(x.BC)2(x.BP)2=BC2BP2
x2BC2x2BP2=BC2BP2
x2(BC2BP2)=BC2BP2
x2=BC2BP2BC2BP2=1
x=1
Putt this value in equation (ii)
AC=1.BC=BC
Because angles opposite those equal sides would be equal. So,
A=B

Q7.

If cotθ=78,evalute;

(i)(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)

(ii)cot2θ

Ans.


Let's take a ABC, where Bis a right angle as per above figure.
We know that-
cotθ=Adjacent side toθOpposite side toθ=ABBC=78
LetAB=7x and BC=8x, Here x is a positive integer.
By Pythagoras theorem in ABC
AC2=AB2+BC2
AC2=(7x)2+(8x)2
AC2=49x2+64x2
AC2=113x2
AC=113x2
AC=113x
Therefore,
sinθ=OppositesidetoθHypotenuse=BCAC=8x113x=8113
cosθ=AdjacentsidetoθHypotenuse=ABAC=7x113x=7113
(i)(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)
We know that-(a+b)(ab)=a2b2
so,
(1+sinθ)(1sinθ)(1+cosθ)(1cosθ)=1sin2θ1cos2θ
=1(8113)21(7113)2
=164113149113
=4911364113
=4964
(ii)cot2θ
cot2θ=(78)2=4964

Q8.

If 3cotA=4, check whether 1tan2A1+tan2A=cos2Asin2A or not.

Ans.

Given that:
3cotA=4  or cotA=43
We know that-
tanA=1cotA=143=34

Let's take a ABC, where Bis a right angle as per above figure.
We know that-
cotA=Adjacent side to AOpposite side toA=ABBC=43
LetAB=4x and BC=3x, Here x is a positive integer.
By Pythagoras theorem in ABC
AC2=AB2+BC2
AC2=(4x)2+(3x)2
AC2=16x2+9x2
AC2=25x2
AC=25x2
AC=5x
Therefore,
sinA=Opposite side toAHypotenuse=BCAC=3x5x=35
cosA=Adjacent side toAHypotenuse=ABAC=4x5x=45
So,
L.H.S.=1tan2A1+tan2A
=1(34)21+(34)2=19161+916=16916+9=725
R.H.S.=cos2Asin2A
(45)2(35)2=1625925=16925=725
Hence, 1tan2A1+tan2A=cos2Asin2A

Q9.

In triangle ABC, right-angled at B, if tanA=13, find the value of:

(i)sinAcosC+cosAsinC

(ii)cosAcosC+sinAsinC

Ans.

Given that:
triangleABC is a right-angled at B.
tanA=13
We know that-
tanA=Opposite side of AAdjacent side of A=BCAB=13
LetBC=x and AB=3x, Here x is a positive integer.
By Pythagoras theorem in ABC
AC2=AB2+BC2
AC2=(3x)2+(x)2
AC2=3x2+x2
AC2=4x2
AC=4x2
AC=2x
Therefore,
sinA=Opposite side toAHypotenuse=BCAC=12
cosA=Adjacent side toAHypotenuse=ABAC=32
sinC=Opposite side toCHypotenuse=ABAC=32
cosC=Adjacent side toCHypotenuse=BCAC=12
(i)sinAcosC+cosAsinC
By putting the value of the trigonometric function:
=(12)(12)+(32)(32)=14+34=1+34=44=1
(ii)cosAcosC+sinAsinC
By putting the value of the trigonometric function:
=(32)(12)(12)(32)=3434=0

Q10.

In PQR, right-angled at Q, PR+QR=25 cm and PQ=5  cm. Determine the values of sinP, cosP and tanP.

Ans.

Given: In PQR, Q is right-angle.
PQ=5 cm
PR+QR=25 cm
We have to find PR, QR and sinP, cosP and tanP.

Let, In PQR PR=x cm
Therefore,
PR+QR=25 cm
x+QR=25 cm
QR=(25x) cm

By using Pythagoras theorem:
PR2=PQ2+QR2
Putting value
x2=(5)2+(25x)2
by using (ab)2=a22ab+b2
x2=25+62550x+x2
x2x2+50x=650
50x=650
x=65050=13 cm
So,
PR=13cm
QR=2513=12cm
Hence,
sinP=Opposite side toPHypotenuse=QRPR=1213
cosP=Adjacent side toPHypotenuse=PQPR=513
tanP=Opposite side toPAdjacent side toP=QRPQ=125

Q11.

State whether the following are true or false. Justify your answer.

(i) The value of tanA is always less than 1.

(ii) secA=125 for some value of angle A.

(iii) cosA is the abbreviation used for the cosecant of angle A.

(iv) cotA is the product of cot and A.

(v) sinθ=43,for some angle θ.

Ans.

(i) False, because sides of a right-angled triangle may have any length and also the tangent function (tan) can take values greater than 1. So tan A may have any value.
For example : tan(600)=3 which is greater then 1.
(ii) True, Because secA is the secant function, which is the reciprocal of the cosine function.
For example : If cosA=512 then secA=1cosA=1512=125.
Hence secA>1.
(iii) False, because cosA represents the cosine function, not the cosecant. The cosecant is represented by cosec A.
(iv) False, because cotA is the cotangent function evaluated at A. It is not the product of cot and A.
(v) False, Because the sine function can only take values between 1 amd 1, so sinθ=43 is not possible for any θ.

No comments:

Post a Comment

If you have any questions or uncertainties, please don't hesitate to ask.