Q1. |
In △ABC, right-angled at B, AB=24 cm, BC=7 cm. Determine: (i)sinA,cosA (ii)sinC,cosC |
Ans. |
∠B=900 AB=24 cm BC=7 cm AC be the hypotenuse By using Pythagoras Theorem: AC2=AB2+BC2 AC2=242+72 AC2=576+49 AC2=625cm2 AC=√625=25 Therefore, AC=25cm (i) sin(A), cos(A): sin(A)=Opposite sideHypotenuse=BCAC=725 cos(A)=Adjacent sideHypotenuse=ABAC=2425 (ii) sin(C), cos(C): sin(C)=Opposite sideHypotenuse=ABAC=2425 cos(C)=Adjacent sideHypotenuse=BCAC=725 |
Q2. | In Fig. 8.13, find tanP–cotR. |
Ans. | PQ=12 cm PR=13 cm By using Pythagoras Theorem: PR2=QR2+PQ2 132=QR2+122 169=QR2+144 169−144=QR2 QR2=25 QR=√25=5 Therefore, QR=5cm tanP=opposite side to∠PAdjacent side to∠P=QRPQ512..........(i) tanR=opposite side to∠RAdjacent side to∠R=PQQR125..........(ii) We know that cotR is reciprocal of tanR, so cotR=1tanR Putting value of tanR from equation (ii) cotR=1125=512.......(iii) Thus, tanP–cotR Putting value from equation (i) and (iii) =512−512=0 |
Q3. | IfsinA=34, calculate cosA and tanA. |
Ans. | Given: In given △ABC ∠B=900 sinA=Opposite side to ∠AHypotenuse=BCAC=34 Let BC=3k AC=4k By using Pythagoras Theorem: AC2=AB2+BC2 4k2=AB2+3k2 16k2=AB2+9k2 16k2−9k2=AB2 AB2=7k2 AB=√7k2=√7k Therefore, AB=√7 cosA=Adjacent side of ∠AHypotenuse=ABAC=√7k4k=√74 tanA=Opposite side of ∠AAdjacent side of∠A=BCAB=3k√7k=3√7 Alternative Method: If sinA=34, we can use the Pythagorean identity to find cosA and then use the definition of tanA. The Pythagorean identity is given by: sin2A+cos2A=1 cos2A=1−sin2A By putting sinA value: cos2A=1−(34)2 cos2A=1−(916) cos2A=716 cosA=±√74 Since, sinA is positive and cosA is in the same quadrant as sinA, we take the positive root. cosA=√74 As we know that tanA=sinAcosA by putting value tanA=34√44 tanA=34×4√7 tanA=3√7 |
Q4. | Given 15cotA=8, find sinA and secA. |
Ans. | cotA=815 We know that tanA=1cotA By putting cosA value tanA=1815=158 So, tanA=Opposite side of ∠AAdjacent side of ∠A=158 For find AC (Hypotenuse) we use Pythagoras Theorem: AC2=AB2+BC2 AC2=8k2+15k2 AC2=64k2+225k2 AC2=289k2 AC=17k Therefore, AC=17k sinA=Opposite side to ∠AHypotenuse=BCAC=15k17k=1517 cosA=Adjacent side to ∠AHypotenuse=ABAC=8k17k=817 We know that- secA=1cosA=1817=178 |
Q5. | Given secθ=1312, calculate all other trigonometric ratios. |
Ans. | Given: secθ=1312 We know that cosθ=1secθ By putting secθ value cosθ=11312=1213 We also know that Pythagorean identity is: sin2θ+cos2θ=1 By putting cosθ value sin2θ+(1213)2=1 sin2θ=1−144169 sin2θ=25169 sinθ=±513 Since, secθ>0 in the given expression and sinθ is positive. so, sinθ=513 The other trigonometric ratios are: tanθ=sinθcosθ=5131213=512 cotθ=1tanθ=1512=125 cosecθ=1sinθ=1513=135 secθ=1312 given |
Q6. | If ∠A and ∠B are acute angles such that cosA=cosB, then show that ∠A=∠B. |
Ans. | Given : ∠A and ∠B are acute angles. cosA=cosB We have to show that ∠A=∠B. In right angle △ABCcosA=Adjacentsideto∠AHypotenuse=ACAB cosB=Adjacentsideto∠BHypotenuse=BCAB As per given that cosA=cosB Therefore, ACAB=BCAB Cross multiply AC×AB=BC×AB divide both side by AB, we get AC=BC Because both ratios are equal, then the lengths of AC and BC are the equal and △ABC is a Isosceles triangle, then angles opposite those equal sides would be equal. So, ∠A=∠B Alternative solution: Let's take a triangle ABC in which CP ┴ AB As per given cosA=cosB APAC=BPBC APBP=ACBC Let APBP=ACBC=x Then, AP=x.BP............(i) AC=x.BC............(ii) By using Pythagoras theorem, we get From △CAP AC2=AP2+CP2 CP2=AC2−AP2........(iii) From △CBP BC2=BP2+CP2 CP2=BC2−BP2.........(iv) from equatio (iii) and (iv), we get AC2−AP2=BC2−BP2 Putting value from (i) and (ii) (x.BC)2−(x.BP)2=BC2−BP2 x2BC2−x2BP2=BC2−BP2 x2(BC2−BP2)=BC2−BP2 x2=BC2−BP2BC2−BP2=1 x=1 Putt this value in equation (ii) AC=1.BC=BC Because angles opposite those equal sides would be equal. So, ∠A=∠B |
Q7. | If cotθ=78,evalute; (i)(1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ) (ii)cot2θ |
Ans. | Let's take a △ABC, where ∠Bis a right angle as per above figure. We know that- cotθ=Adjacent side toθOpposite side toθ=ABBC=78 LetAB=7x and BC=8x, Here x is a positive integer. By Pythagoras theorem in △ABC AC2=AB2+BC2 AC2=(7x)2+(8x)2 AC2=49x2+64x2 AC2=113x2 AC=√113x2 AC=√113x Therefore, sinθ=OppositesidetoθHypotenuse=BCAC=8x√113x=8√113 cosθ=AdjacentsidetoθHypotenuse=ABAC=7x√113x=7√113 (i)(1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ) We know that-(a+b)(a−b)=a2−b2 so, (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ)=1−sin2θ1−cos2θ =1−(8√113)21−(7√113)2 =1−641131−49113 =4911364113 =4964 (ii)cot2θ cot2θ=(78)2=4964 |
Q8. | If 3cotA=4, check whether 1−tan2A1+tan2A=cos2A−sin2A or not. |
Ans. | Given that: 3cotA=4 or cotA=43 We know that- tanA=1cotA=143=34 Let's take a △ABC, where ∠Bis a right angle as per above figure. We know that- cotA=Adjacent side to ∠AOpposite side to∠A=ABBC=43 LetAB=4x and BC=3x, Here x is a positive integer. By Pythagoras theorem in △ABC AC2=AB2+BC2 AC2=(4x)2+(3x)2 AC2=16x2+9x2 AC2=25x2 AC=√25x2 AC=√5x Therefore, sinA=Opposite side to∠AHypotenuse=BCAC=3x5x=35 cosA=Adjacent side to∠AHypotenuse=ABAC=4x5x=45 So, L.H.S.=1−tan2A1+tan2A =1−(34)21+(34)2=1−9161+916=16−916+9=725 R.H.S.=cos2A−sin2A (45)2−(35)2=1625−925=16−925=725 Hence, 1−tan2A1+tan2A=cos2A−sin2A |
Q9. | In triangle ABC, right-angled at B, if tanA=1√3, find the value of: (i)sinAcosC+cosAsinC (ii)cosAcosC+sinAsinC |
Ans. | Given that: triangleABC is a right-angled at B. tanA=1√3 We know that- tanA=Opposite side of ∠AAdjacent side of ∠A=BCAB=1√3 LetBC=x and AB=√3x, Here x is a positive integer. By Pythagoras theorem in △ABC AC2=AB2+BC2 AC2=(√3x)2+(x)2 AC2=3x2+x2 AC2=4x2 AC=√4x2 AC=2x Therefore, sinA=Opposite side to∠AHypotenuse=BCAC=12 cosA=Adjacent side to∠AHypotenuse=ABAC=√32 sinC=Opposite side to∠CHypotenuse=ABAC=√32 cosC=Adjacent side to∠CHypotenuse=BCAC=12 (i)sinAcosC+cosAsinC By putting the value of the trigonometric function: =(12)(12)+(√32)(√32)=14+34=1+34=44=1 (ii)cosAcosC+sinAsinC By putting the value of the trigonometric function: =(√32)(12)−(12)(√32)=√34−√34=0 |
Q10. | In △PQR, right-angled at Q, PR+QR=25 cm and PQ=5 cm. Determine the values of sinP, cosP and tanP. |
Ans. | Given: In △PQR, ∠Q is right-angle. PQ=5 cm PR+QR=25 cm We have to find PR, QR and sinP, cosP and tanP. Let, In △PQR PR=x cm Therefore, PR+QR=25 cm x+QR=25 cm QR=(25−x) cm By using Pythagoras theorem: PR2=PQ2+QR2 Putting value x2=(5)2+(25−x)2 by using (a−b)2=a2−2ab+b2 x2=25+625−50x+x2 x2−x2+50x=650 50x=650 x=65050=13 cm So, PR=13cm QR=25−13=12cm Hence, sinP=Opposite side to∠PHypotenuse=QRPR=1213 cosP=Adjacent side to∠PHypotenuse=PQPR=513 tanP=Opposite side to∠PAdjacent side to∠P=QRPQ=125 |
Q11. | State whether the following are true or false. Justify your answer. (i) The value of tanA is always less than 1. (ii) secA=125 for some value of angle A. (iii) cosA is the abbreviation used for the cosecant of angle A. (iv) cotA is the product of cot and A. (v) sinθ=43,for some angle θ. |
Ans. | (i) False, because sides of a right-angled triangle may have any length and also the tangent function (tan) can take values greater than 1. So tan A may have any value. For example : tan(600)=√3 which is greater then 1. (ii) True, Because secA is the secant function, which is the reciprocal of the cosine function. For example : If cosA=512 then secA=1cosA=1512=125. Hence secA>1. (iii) False, because cosA represents the cosine function, not the cosecant. The cosecant is represented by cosec A. (iv) False, because cotA is the cotangent function evaluated at ∠A. It is not the product of cot and A. (v) False, Because the sine function can only take values between −1 amd 1, so sinθ=43 is not possible for any ∠θ. |
No comments:
Post a Comment
If you have any questions or uncertainties, please don't hesitate to ask.