Q1. |
Express the trigonometric ratios sinA,secA and tanA in terms of cotA. |
Ans. |
As we know that cotA is reciprocal of tanA So, tanA=1cotA We also know that- 1+cot2A=cosec2A cosec2A=1+cot2A cosecA=±√1+cot2A Here, A is acute angle and cosec is positive for acute angle A. Therefore, cosecA=√1+cot2A........(i) Expressing sinA We know that- sinA=1cosec A putting value from equation (i) sinA=1√1+cot2A Expressing secA We know that- 1+tan2A=sec2A sec2A=1+tan2A secA=±√1+tan2A Here, A is acute angle and secA is positive for acute angle A. Therefore, secA=√1+tan2A By converting tanA to cotA secA=√1+1cot2A secA=√(cot2A+1cot2A) secA=√cot2A+1cotA |
Q2. | Write all the other trigonometric ratios of ∠A in terms of secA. |
Ans. | We know that cosA=1secA And we also know that- 1+tan2A=sec2A By transposing tan2A=sec2A−1 tanA=±√sec2A−1 Here, A is acute angle and A is positive for acute angle A. tanA=√sec2A−1 We know that cotA=1tanA Putting value cotA=1√sec2A−1 We also know that 1+cot2A=cosec2A cosec2A=1+cot2A Putting value cosec2A=1+(1√sec2A−1)2 cosec2A=1+(1sec2A−1) cosec2A=(1×(sec2A−1)+1sec2A−1) cosec2A=(sec2A−1+1sec2A−1) cosec2A=sec2Asec2A−1 cosecA=±√sec2Asec2A−1 cosecA=±sec2A√sec2A−1 Here, A is acute angle and cosecA is positive for acute angle A. cosecA=sec2A√sec2A−1 We know that- sinA=1cosecA Putting value sinA=1(secA√sec2A−1) sinA=√sec2A−1secA |
Q3. |
|
(i) | ( i ) 9sec2A−9tan2A= (A) 1 (B) 9 (C) 8 (D) 0 |
Ans. | By usingsec2A=1+tan2A9sec2A−9tan2A=9(1+tan2A)−9tan2A=9+9tan2A−6tan2A=9+0=9Therefore, correct option is B |
(ii) | (1+tanθ+secθ)(1+cotθ−cosecθ)= (A) 0 (B) 1 (C) 2 (D) −1 |
Ans. | We know that- tanθ=sinθcosθ secθ=1cosθ cotθ=cosθsinθ cosec θ=1sinθ By putting values=(1+sinθcosθ+1cosθ)(1+cosθsinθ−1sinθ)=(cosθ+sinθ+1)(1+sinθ+cosθ−1)cosθ⋅sinθ=(cosθ+sinθ)2−1cosθ⋅sinθ=cos2θ+sin2θ+2cosθ⋅sinθ−1cosθ⋅sinθ=1−1+2cosθ⋅sinθcosθ⋅sinθ=2 Therefore, correct option is C. |
(iii) | (secA+tanA)(1−sinA)= (A) secA (B) sinA (C) cosec A (D) cosA |
Ans. | We know that- tanA=sinAcosA secA=1cosA =(1cosA+sinAcosA)(1−sinA)=(1+sinAcosA)(1−sinA)=(1+sinA)(1−sinA)cosAWe know that-(a+b)(a−b)=a2−b2 so=(12−sin2A)cosAWe know that cos2θ=1−sin2θ=cos2AcosA=cosA Therefore, correct option is D. |
(iv) | 1+tan2A1+cot2A= (A) sec2A (B) −1 (C) cot2A (D) tan2A |
Ans. | We know that- tanA=sinAcosA cotA=cosAsinA 1+tan2A1+cot2A=1+sin2Acos2A1+cos2Asin2A=cos2A+sin2Acos2Asin2A+cos2Asin2A=cos2A+sin2Acos2A×cos2Acos2A+sin2AWe know thatcos2A+sin2A=1=1cos2A×sin2A1=sin2Acos2A=(sinAcosA)2=tan2A Therefore, correct option is D. |
Q4. | ( iii )tanθ1−cotθ+cotθ1−tanθ=1+secθcosecθ Hint: Write the expression in terms ofsinθ and cosθ ( iv )1+secAsecA=sin2A1−cosA Hint : Simplify LHS and RHS separately ( v )cosA−sinA+1cosA+sinA−1=cosecA+cotA, using the identity cosec2A=1+cot2A. ( vi )√1+sinA1−sinA=secA+tanA ( vii )sinθ−2sin3θ2cos3θ−cosθ=tanθ ( viii )(sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A ( ix )(cosec A−sinA)(secA−cosA)=1tanA+cotA Hint: Simplify LHS and RHS separately ( x )(1+tan2A1+cot2A)=(1−tanA1−cotA)2=tan2A |
(i) | (cosecθ−cotθ)2=1−cosθ1+cosθ |
Ans. | Write in terms ofcosθ and sinθ(cosecθ−cotθ)2=(1sinθ−cosθsinθ)=(1−cosθsinθ)2=(1−cosθ)2sin2θWe know that: sin2θ=1−cos2θ=(1−cosθ)21−cos2θ=(1−cosθ)212−cos2θBy using a2−b2=(a−b)(a+b)=(1−cosθ)2(1+cosθ)(1−cosθ)=1−cosθ1+cosθ=R.H.S. |
(ii) | cosA1+sinA+1+sinAcosA=2secA |
Ans. | cosA1+sinA+1+sinAcosA=cosA(cosA)+(1+sinA)(1+sinA)(1+sinA)(cosA)=cos2A+(1+sinA)2(1+sinA)(cosA)=cos2A+12+sin2A+2sinA(1+sinA)(cosA)=(cos2A+sin2A)+1+2sinA(1+sinA)(cosA)We know that cos2A+sin2A=1=1+1+2sinA(1+sinA)(cosA)=2+2sinA(1+sinA)(cosA)=2(1+sinA)(1+sinA)(cosA)=2cosA=2×1cosA=2secA=RHS |
(iii) | tanθ1−cotθ+cotθ1−tanθ=1+secθcosecθ |
Ans. | Covert LHS in terms of sinθ and cosθtanθ1−cotθ+cotθ1−tanθ=sinθcosθ1−(cosθsinθ)+(cosθsinθ)1−(sinθcosθ)=sinθcosθsinθ−cosθsinθ+(cosθsinθ)(cosθ−sinθcosθ)=sinθcosθ×sinθsinθ−cosθ+cosθsinθ×cosθcosθ−sinθ=sin2θcosθ(sinθ−cosθ)+cos2θsinθ(cosθ−sinθ)=sin2θcosθ(sinθ−cosθ)+cos2θsinθ×−(sinθ−cosθ)=sin2θcosθ(sinθ−cosθ)−cos2θsinθ(sinθ−cosθ)=sin2θ×(sinθ)−cos2θ×(cosθ)cosθ(sinθ−cosθ)sinθ=sin3θ−cos3θcosθsinθ(sinθ−cosθ)By using a3−b3=(a−b)(a2+b2+ab)=(sinθ−cosθ)(sin2θ+cos2θ+cosθsinθ)cosθsinθ(sinθ−cosθ)=sin2θ+cos2θ+cosθsinθcosθsinθWe know that cos2θ+sin2θ=1=1+cosθsinθcosθsinθ=1cosθsinθ+cosθsinθcosθsinθ=1cosθ×1sinθ+1=secθ×cosecθ+1=1+secθcosecθ=RHS |
(iv) | 1+secAsecA=sin2A1−cosA |
Ans. | LHS1+secAsecA=1secA+secAsecA=1secA+1We know thatcosA=1secA=cosA+1 RHS=sin2A1−cosAWe know thatsin2θ=1−cos2θ=1−cos2A1−cosA=12−cos2A1−cosABy usinga2−b2=(a−b)(a+b)=(1−cosA)(1+cosA)1−cosA=1+cosA |
(v) | cosA−sinA+1cosA+sinA−1=cosecA+cotA, using the identity cosec2A=1+cot2A. |
Ans. | LHSBy divideing numerator and denominator by sinAcosA−sinA+1cosA+sinA−1=cosAsinA−sinAsinA+1sinAcosAsinA+sinAsinA−1sinA=cotA−1+cosec AcotA+1−cosec A=(cotA+cosec A)−1(cotA+1−cosec A)We know that cosec2θ−cot2θ=1=(cotA+cosec A)−(cosec2A−cot2A)(cotA+1−cosec A)By usinga2−b2=(a−b)(a+b)=(cotA+cosec A)−(cosecA−cotA)(cosec A+cotA)cotA+1−cosec A=(cotA+cosecA)[1−(cosecA−cotA)][cotA+1−cosecA]=(cotA+cosecA)[1−cosecA+cotA][cotA+1−cosecA]=(cotA+cosecA)[cotA+1−cosecA][cotA+1−cosecA]=cotA+cosec A=RHS |
(vi) | √1+sinA1−sinA=secA+tanA |
Ans. | LHSTo rationalising denominatorMultiply numerator and denominator by (1+sinA)√1+sinA1−sinA=√(1+sinA)(1+sinA)(1−sinA)(1+sinA)=√(1+sinA)212−sin2A=√(1+sinA)21−sin2AWe know that 1−sin2A=cos2A=√(1+sinA)2cos2A=√(1+sinAcosA)2=1+sinAcosA=1cosA+sinAcosA=secA+tanA=RHS |
(vii) | sinθ−2sin3θ2cos3θ−cosθ=tanθ |
Ans. | LHSsinθ−2sin3θ2cos3θ−cosθ=sinθ(1−2sin2θ)cosθ(2cos2θ−1)=sinθcosθ×(1−2sin2θ)(2cos2θ−1)We know thattanθ=sinθcosθ=tanθ×(1−2sin2θ)(2cos2θ−1)We know thatcos2θ=1−sin2θ=tanθ×(1−2sin2θ)[2(1−2sin2θ)−1]=tanθ×(1−2sin2θ)(2−2sin2θ−1=tanθ×(1−2sin2θ)(1−2sin2θ)=tanθ×1=tanθ=RHS |
(viii) | (sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A |
Ans. | LHSsinA+cosec A)2+(cosA+secA)2=(sin2A+cosec2A+2sinA⋅ cosec A)+(cos2A+sec2A+2cosA⋅secA)=(sin2A+cosec2A+2sinA⋅1sinA)+(cos2A+sec2A+2cosA⋅1cosA)=(sin2A+cosec2A+2)+(cos2A+sec2A+2)We know that cosec2A=1+cot2A and sec2A=1+tan2A=(sin2A+(1+cot2A)+2)+(cos2A+(1+tan2A)+2)=sin2A+cot2A+1+2+cos2A+1+tan2A+2=(sin2A++cos2A)+cot2A+tan2A+(1+2+1+2)By usingsin2A+cos2A=1=1+cot2A+tan2A+6=7+cot2A+tan2A=RHS |
(ix) | (cosec A−sinA)(secA−cosA)=1tanA+cotA |
Ans. | LHS (cosec A−sinA)(secA−cosA) =(1sinA−sinA)(1cosA−cosA) =(1−sin2A)sinA×(1−cos2A)cosA We know thatcos2θ=1−sin2θ and sin2θ=1−cos2θ cos2AsinA×sin2Acos2A sinA⋅cosA RHS 1tanA+cotA =1sinAcosA+cosAsinA =1sinA(sinA)+cosA(cosA)cosAsinA =1sin2A+cos2AcosA⋅sinA =sinA⋅cosAsin2A+cos2A By using sin2A+cos2A=1 =sinA⋅cosA1 =sinA⋅cosA =LHS |
(x) | (1+tan2A1+cot2A)=(1−tanA1−cotA)2=tan2A |
Ans. | By solving=(1+tan2A1+cot2A)=(1+tan2A)(1+1tan2A)=(1+tan2A)(tan2A+1)tan2A=tan2A(1+tan2A)(tan2A+1)=tan2A=RHSBy solving=(1−tanA1−cotA)2=(1−tanA1−1tanA)2=(1−tanA(tanA−1)tanA)2=(tanA(1−tanA)(tanA−1))2=(tanA(1−tanA)−(1−tanA))2=(−tanA)2=tan2A=RHS=Hence Proved |
No comments:
Post a Comment
If you have any questions or uncertainties, please don't hesitate to ask.