Processing math: 100%

CBSE Class 10 Chapter 8 Introduction of Trigonometry Exercise 8.3

 

Q1.

Express the trigonometric ratios sinA,secA and tanA in terms of cotA.

Ans.

As we know that cotA is reciprocal of tanA So,

tanA=1cotA

We also know that-

1+cot2A=cosec2A

cosec2A=1+cot2A

cosecA=±1+cot2A

Here, A is acute angle and cosec is positive for acute angle A.

Therefore,

cosecA=1+cot2A........(i)

Expressing sinA

We know that-

sinA=1cosec A

putting value from equation (i)

sinA=11+cot2A

Expressing secA

We know that-

1+tan2A=sec2A

sec2A=1+tan2A

secA=±1+tan2A

Here, A is acute angle and secA is positive for acute angle A.

Therefore,

secA=1+tan2A

By converting tanA to cotA

secA=1+1cot2A

secA=(cot2A+1cot2A)

secA=cot2A+1cotA

Q2.

Write all the other trigonometric ratios of A in terms of secA.

Ans.

We know that

cosA=1secA

And we also know that-

1+tan2A=sec2A

By transposing

tan2A=sec2A1

tanA=±sec2A1

Here, A is acute angle and A is positive for acute angle A.

tanA=sec2A1

We know that

cotA=1tanA

Putting value

cotA=1sec2A1

We also know that

1+cot2A=cosec2A

cosec2A=1+cot2A

Putting value

cosec2A=1+(1sec2A1)2

cosec2A=1+(1sec2A1)

cosec2A=(1×(sec2A1)+1sec2A1)

cosec2A=(sec2A1+1sec2A1)

cosec2A=sec2Asec2A1

cosecA=±sec2Asec2A1

cosecA=±sec2Asec2A1

Here, A is acute angle and cosecA is positive for acute angle A.

cosecA=sec2Asec2A1

We know that-

sinA=1cosecA

Putting value

sinA=1(secAsec2A1)

sinA=sec2A1secA

Q3.

Choose the correct option. Justify your choice.

(i)

( i ) 9sec2A9tan2A=

 (A) 1 (B) 9 (C) 8 (D) 0

Ans.

By usingsec2A=1+tan2A9sec2A9tan2A=9(1+tan2A)9tan2A=9+9tan2A6tan2A=9+0=9Therefore, correct option is B

(ii)

(1+tanθ+secθ)(1+cotθcosecθ)=

 (A) 0 (B) 1 (C) 2 (D) 1

Ans.

We know that-
tanθ=sinθcosθ
secθ=1cosθ
cotθ=cosθsinθ
cosec θ=1sinθ
By putting values=(1+sinθcosθ+1cosθ)(1+cosθsinθ1sinθ)=(cosθ+sinθ+1)(1+sinθ+cosθ1)cosθsinθ=(cosθ+sinθ)21cosθsinθ=cos2θ+sin2θ+2cosθsinθ1cosθsinθ=11+2cosθsinθcosθsinθ=2
Therefore, correct option is C.

(iii)

(secA+tanA)(1sinA)=

 (A) secA (B) sinA (C) cosec A (D) cosA

Ans.

We know that-
tanA=sinAcosA
secA=1cosA
=(1cosA+sinAcosA)(1sinA)=(1+sinAcosA)(1sinA)=(1+sinA)(1sinA)cosAWe know that-(a+b)(ab)=a2b2 so=(12sin2A)cosAWe know that cos2θ=1sin2θ=cos2AcosA=cosA
Therefore, correct option is D.

(iv)

1+tan2A1+cot2A=

 (A) sec2A (B) 1 (C) cot2A (D) tan2A

Ans.

We know that-
tanA=sinAcosA
cotA=cosAsinA
1+tan2A1+cot2A=1+sin2Acos2A1+cos2Asin2A=cos2A+sin2Acos2Asin2A+cos2Asin2A=cos2A+sin2Acos2A×cos2Acos2A+sin2AWe know thatcos2A+sin2A=1=1cos2A×sin2A1=sin2Acos2A=(sinAcosA)2=tan2A
Therefore, correct option is D.

Q4.

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

( i )(cosecθcotθ)2=1cosθ1+cosθ

( ii )cosA1+sinA+1+sinAcosA=2secA

( iii )tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

Hint: Write the expression in terms ofsinθ and cosθ

( iv )1+secAsecA=sin2A1cosA

Hint : Simplify LHS and RHS separately

( v )cosAsinA+1cosA+sinA1=cosecA+cotA, using the identity cosec2A=1+cot2A.

( vi )1+sinA1sinA=secA+tanA

( vii )sinθ2sin3θ2cos3θcosθ=tanθ

( viii )(sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A

( ix )(cosec AsinA)(secAcosA)=1tanA+cotA

Hint: Simplify LHS and RHS separately

( x )(1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A

(i)

(cosecθcotθ)2=1cosθ1+cosθ

Ans.

Write in terms ofcosθ and sinθ(cosecθcotθ)2=(1sinθcosθsinθ)=(1cosθsinθ)2=(1cosθ)2sin2θWe know that: sin2θ=1cos2θ=(1cosθ)21cos2θ=(1cosθ)212cos2θBy using a2b2=(ab)(a+b)=(1cosθ)2(1+cosθ)(1cosθ)=1cosθ1+cosθ=R.H.S.

(ii)

cosA1+sinA+1+sinAcosA=2secA

Ans.

cosA1+sinA+1+sinAcosA=cosA(cosA)+(1+sinA)(1+sinA)(1+sinA)(cosA)=cos2A+(1+sinA)2(1+sinA)(cosA)=cos2A+12+sin2A+2sinA(1+sinA)(cosA)=(cos2A+sin2A)+1+2sinA(1+sinA)(cosA)We know that cos2A+sin2A=1=1+1+2sinA(1+sinA)(cosA)=2+2sinA(1+sinA)(cosA)=2(1+sinA)(1+sinA)(cosA)=2cosA=2×1cosA=2secA=RHS

(iii)

tanθ1cotθ+cotθ1tanθ=1+secθcosecθ

Ans.

Covert LHS in terms of sinθ and cosθtanθ1cotθ+cotθ1tanθ=sinθcosθ1(cosθsinθ)+(cosθsinθ)1(sinθcosθ)=sinθcosθsinθcosθsinθ+(cosθsinθ)(cosθsinθcosθ)=sinθcosθ×sinθsinθcosθ+cosθsinθ×cosθcosθsinθ=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)=sin2θcosθ(sinθcosθ)+cos2θsinθ×(sinθcosθ)=sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)=sin2θ×(sinθ)cos2θ×(cosθ)cosθ(sinθcosθ)sinθ=sin3θcos3θcosθsinθ(sinθcosθ)By using a3b3=(ab)(a2+b2+ab)=(sinθcosθ)(sin2θ+cos2θ+cosθsinθ)cosθsinθ(sinθcosθ)=sin2θ+cos2θ+cosθsinθcosθsinθWe know that cos2θ+sin2θ=1=1+cosθsinθcosθsinθ=1cosθsinθ+cosθsinθcosθsinθ=1cosθ×1sinθ+1=secθ×cosecθ+1=1+secθcosecθ=RHS

(iv)

1+secAsecA=sin2A1cosA

Ans.

LHS1+secAsecA=1secA+secAsecA=1secA+1We know thatcosA=1secA=cosA+1
RHS=sin2A1cosAWe know thatsin2θ=1cos2θ=1cos2A1cosA=12cos2A1cosABy usinga2b2=(ab)(a+b)=(1cosA)(1+cosA)1cosA=1+cosA

(v)

cosAsinA+1cosA+sinA1=cosecA+cotA, using the identity cosec2A=1+cot2A.

Ans.

LHSBy divideing numerator and denominator by sinAcosAsinA+1cosA+sinA1=cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA1sinA=cotA1+cosec AcotA+1cosec A=(cotA+cosec A)1(cotA+1cosec A)We know that cosec2θcot2θ=1=(cotA+cosec A)(cosec2Acot2A)(cotA+1cosec A)By usinga2b2=(ab)(a+b)=(cotA+cosec A)(cosecAcotA)(cosec A+cotA)cotA+1cosec A=(cotA+cosecA)[1(cosecAcotA)][cotA+1cosecA]=(cotA+cosecA)[1cosecA+cotA][cotA+1cosecA]=(cotA+cosecA)[cotA+1cosecA][cotA+1cosecA]=cotA+cosec A=RHS

(vi)

1+sinA1sinA=secA+tanA

Ans.

LHSTo rationalising denominatorMultiply numerator and denominator by (1+sinA)1+sinA1sinA=(1+sinA)(1+sinA)(1sinA)(1+sinA)=(1+sinA)212sin2A=(1+sinA)21sin2AWe know that 1sin2A=cos2A=(1+sinA)2cos2A=(1+sinAcosA)2=1+sinAcosA=1cosA+sinAcosA=secA+tanA=RHS

(vii)

sinθ2sin3θ2cos3θcosθ=tanθ

Ans.

LHSsinθ2sin3θ2cos3θcosθ=sinθ(12sin2θ)cosθ(2cos2θ1)=sinθcosθ×(12sin2θ)(2cos2θ1)We know thattanθ=sinθcosθ=tanθ×(12sin2θ)(2cos2θ1)We know thatcos2θ=1sin2θ=tanθ×(12sin2θ)[2(12sin2θ)1]=tanθ×(12sin2θ)(22sin2θ1=tanθ×(12sin2θ)(12sin2θ)=tanθ×1=tanθ=RHS

(viii)

(sinA+cosec A)2+(cosA+secA)2=7+tan2A+cot2A

Ans.

LHSsinA+cosec A)2+(cosA+secA)2=(sin2A+cosec2A+2sinA cosec A)+(cos2A+sec2A+2cosAsecA)=(sin2A+cosec2A+2sinA1sinA)+(cos2A+sec2A+2cosA1cosA)=(sin2A+cosec2A+2)+(cos2A+sec2A+2)We know that cosec2A=1+cot2A and sec2A=1+tan2A=(sin2A+(1+cot2A)+2)+(cos2A+(1+tan2A)+2)=sin2A+cot2A+1+2+cos2A+1+tan2A+2=(sin2A++cos2A)+cot2A+tan2A+(1+2+1+2)By usingsin2A+cos2A=1=1+cot2A+tan2A+6=7+cot2A+tan2A=RHS

(ix)

(cosec AsinA)(secAcosA)=1tanA+cotA

Ans.

LHS
(cosec AsinA)(secAcosA)
=(1sinAsinA)(1cosAcosA)
=(1sin2A)sinA×(1cos2A)cosA
We know thatcos2θ=1sin2θ and sin2θ=1cos2θ
cos2AsinA×sin2Acos2A
sinAcosA
RHS
1tanA+cotA
=1sinAcosA+cosAsinA
=1sinA(sinA)+cosA(cosA)cosAsinA
=1sin2A+cos2AcosAsinA
=sinAcosAsin2A+cos2A
By using sin2A+cos2A=1
=sinAcosA1
=sinAcosA
=LHS

(x)

(1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A

Ans.

By solving=(1+tan2A1+cot2A)=(1+tan2A)(1+1tan2A)=(1+tan2A)(tan2A+1)tan2A=tan2A(1+tan2A)(tan2A+1)=tan2A=RHSBy solving=(1tanA1cotA)2=(1tanA11tanA)2=(1tanA(tanA1)tanA)2=(tanA(1tanA)(tanA1))2=(tanA(1tanA)(1tanA))2=(tanA)2=tan2A=RHS=Hence Proved

No comments:

Post a Comment

If you have any questions or uncertainties, please don't hesitate to ask.