Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Class 10 Chapter 8 Introduction of Trigonometry Exercise 8.2

 

Q1.

Evaluate the following :

(i) sin600cos300+sin300cos600

(ii) 2tan2450+cos2300sin2600

(iii) cos450sec300+cosec300

(iv) sin300+tan450cosec600sec300+cos600+cot450

(v) 5cos2600+4sec2300tan2450sec2300+cos2300

(i)

 sin600cos300+sin300cos600

Ans.

We know that

sin60=32

cos30=32

sin30=12

cos60=12

By putting all value, we get

sin60cos30+sin30cos60=(32)(32)+(12)(12)=34+14=1

Hence,  sin600cos300+sin300cos600=1

(ii)

2tan2450+cos2300sin2600

Ans.

We know that

tan45=1

cos30=32

sin60=32

By putting all value, we get

2tan245+cos230sin260=212+(32)2(32)2=2+3434=2.

Hence,  2tan2450+cos2300sin2600=2

(iii)

cos450sec300+cosec300

Ans.

We know that

cos45=12

sec30=1cos300=132=23

cosec30=1sin300=112=21=2

By putting all value, we get

cos450sec300+cosec300=12(23)+(21)=12×1(23)+(21)=12×12×1+2×33×1=12×3×12×1+2×3=12×32+23=1×32×2(1+3)=322(1+3)=322(3+1)=By rationalizing=3(31)22(3+1)(31)=We know that(a+b)(ab)=a2b2 So,=3322((3)212)=3322(31)=3322×2=(33)42=Multiply Numerator and Denominator by 2=(33)42×22=323×24×2=3268

Hence,  cos450sec300+cosec300=3268

(iv)

sin300+tan450cosec600sec300+cos600+cot450

Ans.

We know that

sin30=12

tan45=1

cosec 60=23

sec30=23

cos60=12

cot45=1

By putting all value, we get

=12+12323+12+1=3+234234+3+2323=3+2344+3+23=3344+33=by rationalizing=3344+33×433433=(334)×(433)(4+33)×(433)=1232716+12316123+12327=1232716+12311=2434311=4324311

Hence,  cos450sec300+cosec300=4324311

(v)

5cos2600+4sec2300tan2450sec2300+cos2300

Ans.

We know that

cos60=12

sec30=23

tan45=1

cos30=32

By putting all value, we get

5cos2600+4sec2300tan2450sec2300+cos2300=5×(12)2+4×(23)21(12)2+(32)2=5×14+4×43114+34=54+163114+34=15+6412121+34=15+641212×1=6712

Hence, 5cos2600+4sec2300tan2450sec2300+cos2300=6712

Q2.

Choose the correct option and justify your choice :

(i)

2tan3001+tan2300=

(A) sin600 (B)cos600 (C)tan600 (D)sin300

Ans.

2tan3001+tan2300=2(13)1+(13)2=2311+13=233+13=23×34=323×33=332×3=32=sin600

Therefore, Correct Option is (A)

(ii)

1tan24501+tan2450=

(A) tan900 (B)1 (C)sin450 (D)0

Ans.

1tan24501+tan2450=1(1)21+(1)2=111+1=02=0

Therefore, Correct Option is (D)

(iii)

sin2A=2sinA is true when A=

(A)00(B)300(C)450(D)600

Ans.

sin2A=2sinA, forA=00 Then

L.H.S.=sin2A=sin2×00=sin00=00

R.H.S.=2sinA=2sin00=2×0=0

Therefore, Correct Option is (A)

(iv)

2tan3001tan2300=

(A)cos600(B)sin600(C)tan600(D)sin300

Ans.

2tan3001tan2300=2(13)1(13)2=231113=23313=23×32=33×33=333=3=tan600

Therefore, Correct Option is (C)

Q3.

If tan(A+B)=3 and tan(AB)=13 ; 00<A+B900 ; A>B, Find A and B.

Ans.

tan(A+B)=3=tan600

A+B=600...........(i)

tan(AB)=13=tan300

AB=300...........(ii)

Adding equation (i) and (ii)

A+B+AB=600+300

2A=900

A=902=450

Putting value in equation (i)

450+B=600B=150

Hence, A=450 and B=150

Q4.

State whether the following are true or false. Justify your answer.

(i) sin(A+B)=sinA+sinB.

(ii) The value of sinθ increases as θ increases.

(iii) The value of cosθ increases as θ increases.

(iv) sinθ=cosθ for all values of θ.

(v) cotA is not defined for A=00.

Ans.

(i) sin(A+B)=sinA+sinB.

Let's take A=600 and B=300, then

By putting value

LHS=sin(A+B)=sin(600+300)=sin900=1

RHS=sinA+sinB=sin600+sin300=32+12=1+32

Because value are not equal,so given statement are False.

(ii) The value of sinθ increases as θ increases.

We know that the values obtained from unit circle for sin are:

sin00=0

sin300=12

sin450=12

sin600=32

sin900=1

Therefore, If the value of sinθ increases as θ increases, so the given statement is True.

(iii) The value of cosθ increases as θ increases.

We know that the values obtained from unit circle for cos are:

cos00=1

cos300=32

cos450=12

cos600=12

cos900=0

Therefore, If the value of cosθ decreases as θ increases, so the given statement is False.

(iv) sinθ=cosθ for all values of θ

The sine and cosine functions in degrees are defined based on the unit circle. 

sinθ=cosθ is possible, only when a right angle triangle has 2 angle of π4.

so, given statement is False.

(v) cotA is not defined for A=00

We know that-

cotA=cosAsinA

For A=00, then sinA=sin00=0 amd division by zero is undefined. Therefore cot00 is not defined for A=00.

so, given statement is True.

No comments:

Post a Comment

If you have any questions or uncertainties, please don't hesitate to ask.