Q1. |
Evaluate the following : (i) sin600cos300+sin300cos600 (ii) 2tan2450+cos2300−sin2600 (iii) cos450sec300+cosec300 (iv) sin300+tan450−cosec600sec300+cos600+cot450 (v) 5cos2600+4sec2300−tan2450sec2300+cos2300 |
(i) |
sin600cos300+sin300cos600 |
Ans. |
We know that sin60∘=√32 cos30∘=√32 sin30∘=12 cos60∘=12 By putting all value, we get sin60∘cos30∘+sin30∘cos60∘=(√32)⋅(√32)+(12)⋅(12)=34+14=1 Hence, sin600cos300+sin300cos600=1 |
(ii) | 2tan2450+cos2300−sin2600 |
Ans. | We know that tan45∘=1 cos30∘=√32 sin60∘=√32 By putting all value, we get 2tan245∘+cos230∘−sin260∘=2⋅12+(√32)2−(√32)2=2+34−34=2. Hence, 2tan2450+cos2300−sin2600=2 |
(iii) | cos450sec300+cosec300 |
Ans. | We know that cos45∘=1√2 sec30∘=1cos300=1√32=2√3 cosec30∘=1sin300=112=21=2 By putting all value, we get cos450sec300+cosec300=1√2(2√3)+(21)=1√2×1(2√3)+(21)=1√2×12×1+2×√3√3×1=1√2×√3×12×1+2×√3=1√2×√32+2√3=1×√3√2×2(1+√3)=√32√2(1+√3)=√32√2(√3+1)=By rationalizing=√3(√3−1)2√2(√3+1)(√3−1)=We know that(a+b)(a−b)=a2−b2 So,=3−√32√2((√3)2−12)=3−√32√2(3−1)=3−√32√2×2=(3−√3)4√2=Multiply Numerator and Denominator by √2=(3−√3)4√2×√2√2=3√2−√3×√24×2=3√2−√68 Hence, cos450sec300+cosec300=3√2−√68 |
(iv) | sin300+tan450−cosec600sec300+cos600+cot450 |
Ans. | We know that sin30∘=12 tan45∘=1 cosec 60∘=2√3 sec30∘=2√3 cos60∘=12 cot45∘=1 By putting all value, we get =12+1−2√32√3+12+1=√3+2√3−42√34+√3+2√32√3=√3+2√3−44+√3+2√3=3√3−44+3√3=by rationalizing=3√3−44+3√3×4−3√34−3√3=(3√3−4)×(4−3√3)(4+3√3)×(4−3√3)=12√3−27−16+12√316−12√3+12√3−27=12√3−27−16+12√3−11=24√3−43−11=43−24√3−11 Hence, cos450sec300+cosec300=43−24√3−11 |
(v) | 5cos2600+4sec2300−tan2450sec2300+cos2300 |
Ans. | We know that cos60∘=12 sec30∘=2√3 tan45∘=1 cos30∘=√32 By putting all value, we get 5cos2600+4sec2300−tan2450sec2300+cos2300=5×(12)2+4×(2√3)2−1(12)2+(√32)2=5×14+4×43−114+34=54+163−114+34=15+64−12121+34=15+64−1212×1=6712 Hence, 5cos2600+4sec2300−tan2450sec2300+cos2300=6712 |
Q2. | Choose the correct option and justify your choice : |
(i) | 2tan3001+tan2300= (A) sin600 (B)cos600 (C)tan600 (D)sin300 |
Ans. | 2tan3001+tan2300=2(1√3)1+(1√3)2=2√311+13=2√33+13=2√3×34=32√3×√3√3=3√32×3=√32=sin600 Therefore, Correct Option is (A) |
(ii) | 1−tan24501+tan2450= (A) tan900 (B)1 (C)sin450 (D)0 |
Ans. | 1−tan24501+tan2450=1−(1)21+(1)2=1−11+1=02=0 Therefore, Correct Option is (D) |
(iii) | sin2A=2sinA is true when A= (A)00(B)300(C)450(D)600 |
Ans. | sin2A=2sinA, forA=00 Then L.H.S.=sin2A=sin2×00=sin00=00 R.H.S.=2sinA=2sin00=2×0=0 Therefore, Correct Option is (A) |
(iv) | 2tan3001−tan2300= (A)cos600(B)sin600(C)tan600(D)sin300 |
Ans. | 2tan3001−tan2300=2(1√3)1−(1√3)2=2√311−13=2√33−13=2√3×32=3√3×√3√3=3√33=√3=tan600 Therefore, Correct Option is (C) |
Q3. | If tan(A+B)=√3 and tan(A−B)=1√3 ; 00<A+B≤900 ; A>B, Find A and B. |
Ans. | tan(A+B)=√3=tan600 ⇒A+B=600...........(i) tan(A−B)=1√3=tan300 ⇒A−B=300...........(ii) Adding equation (i) and (ii) A+B+A−B=600+300 2A=900 A=902=450 Putting value in equation (i) 450+B=600⇒B=150 Hence, A=450 and B=150 |
Q4. | State whether the following are true or false. Justify your answer. (i) sin(A+B)=sinA+sinB. (ii) The value of sinθ increases as θ increases. (iii) The value of cosθ increases as θ increases. (iv) sinθ=cosθ for all values of θ. (v) cotA is not defined for A=00. |
Ans. | (i) sin(A+B)=sinA+sinB. Let's take A=600 and B=300, then By putting value LHS=sin(A+B)=sin(600+300)=sin900=1 RHS=sinA+sinB=sin600+sin300=32+12=1+√32 Because value are not equal,so given statement are False. (ii) The value of sinθ increases as θ increases. We know that the values obtained from unit circle for sin are: sin00=0 sin300=12 sin450=1√2 sin600=√32 sin900=1 Therefore, If the value of sinθ increases as θ increases, so the given statement is True. (iii) The value of cosθ increases as θ increases. We know that the values obtained from unit circle for cos are: cos00=1 cos300=√32 cos450=1√2 cos600=12 cos900=0 Therefore, If the value of cosθ decreases as θ increases, so the given statement is False. (iv) sinθ=cosθ for all values of θ The sine and cosine functions in degrees are defined based on the unit circle. sinθ=cosθ is possible, only when a right angle triangle has 2 angle of π4. so, given statement is False. (v) cotA is not defined for A=00 We know that- cotA=cosAsinA For A=00, then sinA=sin00=0 amd division by zero is undefined. Therefore cot00 is not defined for A=00. so, given statement is True. |
No comments:
Post a Comment
If you have any questions or uncertainties, please don't hesitate to ask.