Example 1. |
Given tanA=43, find the other trigonometric ratios of the angle A. |
|
Let's take a △ABC Where B is a right angle and ∠A is a acute angle. We know that tanA=Opposite side to angle Aadjacent side to angle A =BCAB=43 Therefore, if BC=4k then AB=3k. Here k is a positive number. By using Pythagoras Theorem, we can find AC (hypotenuse), AC2=AB2+BC2 AC2=(3k)2+(4k)2 AC2=9k2+16k2 AC2=25k2 AC=5k Now that we have all three sides of the right-angled triangle; AC = 5k, AB=3k, BC=4k, so sinA=BCAC=4k5k=45 cosA=ABAC=3k5k=35 and their reciprocals are cosec A=1sinA=145=54 secA=1cosA=135=53 cotA=1tanA=143=34 |
Example 2. | If ∠B and ∠Q are acute angles such that sinB=sinQ, then prove that ∠B=∠Q. |
Let's take two triangle ABC and PQR such that sinB=sinQ As per construction, we have sinB=ACAB and sinQ=PRPQ As per given, ACAB=PRPQ Therefore, we can say ACPR=ABPQ=k.........................(i) In △ABC by using Pythagoras theorem: AB2=AC2+BC2 BC=√AB2−AC2 In △PQR by using Pythagoras theorem: PQ2=PR2+QR2 QR=√PQ2−PR2 So, \(\frac {BC}{QR} = \frac {\sqrt {AB^{2}-AC^{2}}}{\sqrt {PQ^{2}-PR^{2}}} from equation (i) ACPR=k or AC=k.PR ABPQ=k or AB=k.PQ by putting these value So, BCQR=√k2.PQ2−k2.PR2√PQ2−PR2=k√PQ2−PR2√PQ2−PR2=k.......................(ii) By equation (i) and (ii) we have ACPR=ABPQ=BCQR We know that two triangles are similar, if their corresponding sides are in the same ratio (or proportion), so we can conclude that triangles ABC and PQR are similar. △ABC∼△PQR and therefore ∠B=∠Q. |
Example 3. | Consider △ACB, right-angled at C, in which AB=29 units, BC=21 units and angleABC=θ (see Fig. 8.10). Determine the values of (i) cos2θ+sin2θ (ii) cos2θ−sin2θ |
As per shown in figure, In △ABC , we have AC=√AB2−BC2=√(29)2−(21)2 AC=√(29−21)(29+21)=√(8)(50)=√400=20 unit So, By using trigonometric ratio sinθ=ACAB=2029 cosθ=BCAB=2129 Hence, (i) cos2θ+sin2θ=(2029)2+(2129)2=202+212292=400+441841=1 (ii) cos2θ−sin2θ=(2129)2−(2029)2=(21+20)(21−20)292=41841 |
Example 4. | In a right triangle ABC, right-angled at B, if tan A=1, then verify that 2sinAcosA=1. |
As per given, In △ABC, tan=ABBC=1 So, we can say that the length of the side opposite ∠A is equal to the length of the adjacent side. Therefore, AB=BC Let AB=BC=k, where k is a positive number. Now, in a right-angled triangle, we can use the Pythagorean theorem: AC=√AB2+BC2 Putting value AC=√k2+k2=k√2 Therefore, sinA=BCAC=1√2 and cosA=ABAC=1√2 Hence, 2sinAcosA=2(1√2)(1√2)=1 |
Example 5. | In \triangle OPQ\), right-angled at P,OP=7 cm and OQ–PQ=1 cm (see Fig. 8.12). Determine the values of sinQ and cosQ. |
As per given, In △OPQ, OP=7 cm OQ−PQ=1 or OQ=1+PQ Now, in a right-angled triangle, we can use the Pythagorean theorem: OQ2=OP2+PQ2 As per given, putting OQ value (1+PQ)2=OP2+PQ2 We know that (a+b)2=a2+b2+2ab so, 12+PQ2+2PQ=OP2+PQ2 Divide both side by PQ2 and OP value as per given, we get 1+2PQ=72 2PQ=49−1 2PQ=48=24 cm. So, PQ=24 cm and OQ=1+PQ=25 cm Therefore, sinQ=OPOQ=725 cosQ=PQOQ=2425 |
Example 6. | In △ABC, right-angled at B, AB=5 cm and ∠ACB=300 (see Fig. 8.19). Determine the lengths of the sides BC and AC. |
In △ABC, right-angled at B, AB=5cm and ∠ACB=30∘. We have to find the lengths of the sides BC and AC. 1. By using Sine Ratio: sin30∘=ABAC by putting sin30∘=12 12=5AC AC=51/2=10cm 2. By using Cosine Ratio: cos30∘=BCAC by putting cos30∘=√32 √32=BC10 BC=√32×10=5√3cm Therefore, the lengths of the sides BC and AC are 5√3cm and 10cm, respectively. |
Example 7. | In △PQR, right-angled at Q (see Fig. 8.20), PQ=3 cm and PR=6 cm. Determine ∠QPR and ∠PRQ. |
Given: In △PQR, right-angled at Q, PQ=3cm and PR=6cm. We have to find ∠QPR and ∠PRQ. 1. By using Sine Ratio: We know that sinθ=oppositehypotenuse putting value sin∠PRQ=PQPR=36=12 To find ∠PRQ, take the inverse sine (arcsin) of 12: ∠PRQ=arcsin(12) In degrees, this is equal to 30∘. 2. We know that sum of angle in a right angle triangle is 180∘. so ∠PQR+∠QPR+∠PRQ=180∘ Putting value 90∘+∠QPR+30∘=180∘ ∠QPR=60∘ Therefore, in △PQR, right-angled at Q: ∠QPR=60∘ ∠PRQ=30∘ |
Example 8. | If sin(A−B)=12, cos(A+B)=12, 0∘<A+B≤90∘, A>B, Find A and B. |
Given: sin(A−B)=12, cos(A+B)=12 and 0∘<A+B≤90∘ We know that- sin30∘=12 So, we can write as sin(A−B)=sin30∘ A−B=30∘......................(i) We also know that- cos60∘=12 So, we can write as cos(A+B)=cos60∘ A+B=60∘......................(i) By adding equation (i) and (ii) A−B+A+B=30+60 2A=90 A=45∘ By putting A=45∘ in equation (i) 45∘−B=30∘ 45∘−30∘=B B=15∘ So the solution is A=45∘ and B=15∘ which satisfying given condition. |
Example 9. | Express the ratios cosA, tanA and secA in terms of sinA. |
We know that, Pythagorean identity is: cos2A+sin2A=1 or cos2A=1−sin2A or cosA=±√1−sin2A Here A is acute angle when \(A<90|) so, it is a positive angle, then cosA=√1−sin2A...............(i) Ratio of secA secA=1cosA Putting cosA value from equation (i) secA=1√1−sin2A Ratio of tanA tanA=sinAcosA Putting cosA value from equation (i) tanA=sinA√1−sin2A |
Ex. 10. | Prove that secA(1−sinA)(secA+tanA)=1. |
We know that secA=1cosA and tanA=sinAcosA secA(1−sinA)(secA+tanA) Putting secA and tanAvalue =1cosA(1−sinA)(1cosA+sinAcosA) =(1−sinA)cosA(1cosA+sinAcosA) =(1−sinA)cosA(1+sinAcosA) =(1−sinA)(1+sinA)cosA×cosA =(1−sinA)(1+sinA)cos2A Since, we know that a2−b2=(a−b)(a+b) =1−sin2Acos2A We also know that cos2A+sin2A=1 or cos2A=1−sin2A So we can write as =cos2Acos2A =1 Therefore, secA(1−sinA)(secA+tanA)=1. Its Proved. |
Ex. 11. | Prove that cotA−cosAcotA+cosA=cosec A−1cosec A+1. |
LHS=cotA−cosAcotA+cosA=cosAsinA−cosAcosAsinA+cosA=cosA−sinA⋅cosAsinAcosA+sinA⋅cosAsinA=cosA(1−sinA)cosA(1+sinA)=1−sinA1+sinA=(1−sinA)sinA(1+sinA)sinA=1sinA−sinAsinA1sinA+sinASinA=1sinA−11sinA+1=cosec A−1cosec A+1.
Therefore, cotA−cosAcotA+cosA=cosec A−1cosec A+1. |
Ex. 12. | Prove that sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ, using the identity sec0θ=1+tan0θ. |
LHS=sinθ−cosθ+1sinθ+cosθ−1=(sinθ−cosθ+1sinθ+cosθ−1)×(sinθ+cosθ+1sinθ+cosθ+1)=(sinθ+1−cosθsinθ+cosθ−1)×(sinθ+1+cosθsinθ+cosθ+1)=(sinθ+1)2−cos2θ(sinθ+cosθ)2−12=sin2θ+1+2sinθ−cos2θsin2θ+cos2θ+2sinθcosθ−1=We know that sin2θ+cos2θ=1 and sin2θ=1−cos2θ=Therefore,=1−cos2θ+1+2sinθ−cos2θ1+2sinθcosθ−1=2−2cos2θ+2sinθ2sinθcosθ=sin2θ+sinθsinθcosθ=sinθ+1cosθ=1cosθ+sinθcosθ=secθ+tanθ=(secθ+tanθ)×(secθ−tanθsecθ−tanθ)=sec2θ−tan2θsecθ−tanθ=As we know and given thatsec2θ−tan2θ=1=Therefore,=1secθ−tanθ=RHS=Hence, It's proved.
|
No comments:
Post a Comment
If you have any questions or uncertainties, please don't hesitate to ask.