Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Class 10 Chapter 8 Introduction of Trigonometry Examples

 

Example 1.

Given tanA=43, find the other trigonometric ratios of the angle A.

Solution. 


Let's take a ABC Where B is a right angle and A is a acute angle.

We know that  tanA=Opposite side to angle Aadjacent side to angle A =BCAB=43

Therefore, if BC=4k then AB=3k. Here k is a positive number.

By using Pythagoras Theorem, we can find AC (hypotenuse),

AC2=AB2+BC2

AC2=(3k)2+(4k)2

AC2=9k2+16k2

AC2=25k2

AC=5k

Now that we have all three sides of the right-angled triangle; AC = 5k, AB=3k, BC=4k, so

sinA=BCAC=4k5k=45

cosA=ABAC=3k5k=35

and their reciprocals are

cosec A=1sinA=145=54

secA=1cosA=135=53

cotA=1tanA=143=34

Example 2.

If B and Q are acute angles such that sinB=sinQ, then prove that B=Q.

Solution. 


Let's take two triangle ABC and PQR such that sinB=sinQ
As per construction, we have sinB=ACAB and sinQ=PRPQ
As per given,
ACAB=PRPQ
Therefore, we can say
ACPR=ABPQ=k.........................(i)
In ABC by using Pythagoras theorem:
AB2=AC2+BC2
BC=AB2AC2
In PQR by using Pythagoras theorem:
PQ2=PR2+QR2
QR=PQ2PR2
So, \(\frac {BC}{QR} = \frac {\sqrt {AB^{2}-AC^{2}}}{\sqrt {PQ^{2}-PR^{2}}}
from equation (i)
ACPR=k or AC=k.PR
ABPQ=k or AB=k.PQ
by putting these value
So, BCQR=k2.PQ2k2.PR2PQ2PR2=kPQ2PR2PQ2PR2=k.......................(ii)
By equation (i) and (ii) we have
ACPR=ABPQ=BCQR
We know that two triangles are similar, if their corresponding sides are in the same ratio (or proportion), so we can conclude that triangles ABC and PQR are similar.
ABCPQR and therefore B=Q.

Example 3.

Consider ACB, right-angled at C, in which AB=29 units, BC=21 units and angleABC=θ (see Fig. 8.10). Determine the values of 

(i) cos2θ+sin2θ

(ii) cos2θsin2θ

Solution. 


As per shown in figure, In ABC , we have
AC=AB2BC2=(29)2(21)2
AC=(2921)(29+21)=(8)(50)=400=20 unit
So, By using trigonometric ratio
sinθ=ACAB=2029
cosθ=BCAB=2129
Hence,
(i) cos2θ+sin2θ=(2029)2+(2129)2=202+212292=400+441841=1
(ii) cos2θsin2θ=(2129)2(2029)2=(21+20)(2120)292=41841

Example 4.

In a right triangle ABC, right-angled at B, if tan A=1, then verify that 2sinAcosA=1.

Solution. 


As per given, In ABC, tan=ABBC=1
So, we can say that the length of the side opposite A is equal to the length of the adjacent side.
Therefore, AB=BC
Let AB=BC=k, where k is a positive number.
Now, in a right-angled triangle, we can use the Pythagorean theorem:
AC=AB2+BC2
Putting value
AC=k2+k2=k2
Therefore, sinA=BCAC=12 and cosA=ABAC=12
Hence,
2sinAcosA=2(12)(12)=1

Example 5.

In \triangle OPQ\), right-angled at P,OP=7 cm and OQPQ=1 cm (see Fig. 8.12). Determine the values of sinQ and cosQ.

Solution. 


As per given, In OPQ,
OP=7 cm
OQPQ=1 or OQ=1+PQ
Now, in a right-angled triangle, we can use the Pythagorean theorem:
OQ2=OP2+PQ2
As per given, putting OQ value
(1+PQ)2=OP2+PQ2
We know that (a+b)2=a2+b2+2ab so,
12+PQ2+2PQ=OP2+PQ2
Divide both side by PQ2 and OP value as per given, we get
1+2PQ=72
2PQ=491
2PQ=48=24 cm.
So, PQ=24 cm and OQ=1+PQ=25 cm
Therefore, 
sinQ=OPOQ=725
cosQ=PQOQ=2425

Example 6.

In ABC, right-angled at B, AB=5 cm and ACB=300 (see Fig. 8.19). Determine the lengths of the sides BC and AC.

Solution. 


In ABC, right-angled at B, AB=5cm and ACB=30. We have to find the lengths of the sides BC and AC.
1. By using Sine Ratio:
sin30=ABAC
by putting sin30=12
12=5AC
AC=51/2=10cm

2. By using Cosine Ratio:
cos30=BCAC
by putting cos30=32
32=BC10
BC=32×10=53cm
Therefore, the lengths of the sides BC and AC are 53cm and 10cm, respectively.

Example 7.

In PQR, right-angled at Q (see Fig. 8.20), PQ=3 cm and PR=6 cm. Determine QPR and PRQ.

Solution. 


Given: In PQR, right-angled at Q, PQ=3cm and PR=6cm. We have to find  QPR and PRQ.

1. By using Sine Ratio: We know that  sinθ=oppositehypotenuse
putting value
sinPRQ=PQPR=36=12
To find PRQ, take the inverse sine (arcsin) of 12:
PRQ=arcsin(12)
In degrees, this is equal to 30.
2. We know that sum of angle in a right angle triangle is 180. so
PQR+QPR+PRQ=180
Putting value
90+QPR+30=180
QPR=60
Therefore, in PQR, right-angled at Q:
QPR=60
PRQ=30

Example 8.

If sin(AB)=12, cos(A+B)=12, 0<A+B90, A>B, Find A and B.

Solution. 

Given: sin(AB)=12, cos(A+B)=12 and 0<A+B90
We know that-
sin30=12
So, we can write as
sin(AB)=sin30
AB=30......................(i)
We also know that-
cos60=12
So, we can write as
cos(A+B)=cos60
A+B=60......................(i)
By adding equation (i) and (ii)
AB+A+B=30+60
2A=90
A=45
By putting A=45 in equation (i)
45B=30
4530=B
B=15
So the solution is A=45 and B=15 which satisfying given condition.

Example 9.

Express the ratios cosA, tanA and secA in terms of sinA.

Solution. 

We know that, Pythagorean identity is:
cos2A+sin2A=1
or
cos2A=1sin2A
or
cosA=±1sin2A
Here A is acute angle when \(A<90|) so, it is a positive angle, then
cosA=1sin2A...............(i)
Ratio of secA
secA=1cosA
Putting cosA value from equation (i)
secA=11sin2A
Ratio of tanA
tanA=sinAcosA
Putting cosA value from equation (i)
tanA=sinA1sin2A

Ex. 10.

Prove that secA(1sinA)(secA+tanA)=1.

Solution. 

We know that secA=1cosA and tanA=sinAcosA
secA(1sinA)(secA+tanA) 
Putting secA and tanAvalue
=1cosA(1sinA)(1cosA+sinAcosA)
=(1sinA)cosA(1cosA+sinAcosA)
=(1sinA)cosA(1+sinAcosA)
=(1sinA)(1+sinA)cosA×cosA
=(1sinA)(1+sinA)cos2A
Since, we know that a2b2=(ab)(a+b)
=1sin2Acos2A
We also know that cos2A+sin2A=1 or cos2A=1sin2A
So we can write as
=cos2Acos2A
=1
Therefore, secA(1sinA)(secA+tanA)=1. Its Proved.

Ex. 11.

Prove that cotAcosAcotA+cosA=cosec A1cosec A+1.

Solution. 

LHS=cotAcosAcotA+cosA=cosAsinAcosAcosAsinA+cosA=cosAsinAcosAsinAcosA+sinAcosAsinA=cosA(1sinA)cosA(1+sinA)=1sinA1+sinA=(1sinA)sinA(1+sinA)sinA=1sinAsinAsinA1sinA+sinASinA=1sinA11sinA+1=cosec A1cosec A+1. Therefore, cotAcosAcotA+cosA=cosec A1cosec A+1.

Ex. 12.

Prove that sinθcosθ+1sinθ+cosθ1=1secθtanθ, using the identity sec0θ=1+tan0θ.

Solution. 

LHS=sinθcosθ+1sinθ+cosθ1=(sinθcosθ+1sinθ+cosθ1)×(sinθ+cosθ+1sinθ+cosθ+1)=(sinθ+1cosθsinθ+cosθ1)×(sinθ+1+cosθsinθ+cosθ+1)=(sinθ+1)2cos2θ(sinθ+cosθ)212=sin2θ+1+2sinθcos2θsin2θ+cos2θ+2sinθcosθ1=We know that sin2θ+cos2θ=1 and sin2θ=1cos2θ=Therefore,=1cos2θ+1+2sinθcos2θ1+2sinθcosθ1=22cos2θ+2sinθ2sinθcosθ=sin2θ+sinθsinθcosθ=sinθ+1cosθ=1cosθ+sinθcosθ=secθ+tanθ=(secθ+tanθ)×(secθtanθsecθtanθ)=sec2θtan2θsecθtanθ=As we know and given thatsec2θtan2θ=1=Therefore,=1secθtanθ=RHS=Hence, It's proved.


No comments:

Post a Comment

If you have any questions or uncertainties, please don't hesitate to ask.