Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Class 10 Chapter 8 Introduction of Trigonometry - Trigonometric Identities

 Trigonometric Identities of Opposite Angles

  • sin(θ)=sinθ
  • cos(θ)=cosθ
  • tan(θ)=tanθ
  • cot(θ)=cotθ
  • sec(θ)=secθ
  • csc(θ)=cscθ
Trigonometric Identities of Complementary Angles
When the sum of two angle are equal to 900 , they are known as complementary angles.
  • sin(90θ)=cosθ
Proof:
Using the sum-to-product identity for sine:
sin(90θ)=sin90cosθcos90sinθ
Simplifying with sin90=1 and cos90=0:
sin(90θ)=cosθ
Therefore, sin(90θ)=cosθ is proven.
  • cos(90θ)=sinθ
Proof:
Using the sum-to-product identity for cosine:
cos(90θ)=cos90cosθ+sin90sinθ
Simplifying with cos90=0 and sin90=1:
cos(90θ)=sinθ
Therefore, cos(90θ)=sinθ is proven.
  • tan(90θ)=cotθ
Proof:
Using the relationship tanθ=sinθcosθ:
We know that  sin(90θ)=cosθ and cos(90θ)=sinθ
tan(90θ)=sin(90θ)cos(90θ)
Therefore, tan(90θ)=cotθ is proven.
  • cot(90θ)=tanθ
Proof:
Using the relationship cotθ=1tanθ:
We know that  tan(90θ)=cotθ ;
cot(90θ)=1cotθ=tanθ
Therefore, cot(90θ)=tanθ is proven.
sec(90θ)=cscθ
csc(90θ)=secθ

                    Trigonometric Identities of Supplementary Angles
                    Two angles are supplementary if their sum is equal to 90 degrees. Similarly, when we can learn here the trigonometric identities for supplementary angles.
                    sin(180θ)=sinθ
                    cos(180θ)=cosθ
                    csc(180θ)=cscθ
                    sec(180θ)=secθ
                    tan(180θ)=tanθ
                    cot(180θ)=cotθ

                    Sum and Difference of Angles Trigonometric Identities
                    Consider two angles , α and β, the trigonometric sum and difference identities are as follows:
                    sin(α+β)=sin(α)cos(β)+cos(α)sin(β)
                    sin(αβ)=sin(α)cos(β)cos(α)sin(β)
                    cos(α+β)=cos(α)cos(β)sin(α)sin(β)
                    cos(αβ)=cos(α)cos(β)+sin(α)sin(β)
                    tan(α+β)=tanα+tanβ1tanα.tanβ
                    tan(αβ)=tanαtanβ1+tanα.tanβ

                    Double Angle Trigonometric Identities
                    If the angles are doubled, then the trigonometric identities for sin, cos and tan are:
                    sin(2θ)=2sin(θ)cos(θ)
                    cos(2θ)=cos2(θ)sin2(θ)=2cos2(θ)1=12sin2(θ)
                    tan(2θ)=2tan(θ)1tan2(θ)

                    Half Angle Identities
                    If the angles are halved, then the trigonometric identities for sin, cos and tan are:
                    sin(θ2)=±1cosθ2
                    cos(θ2)=±1+cosθ2
                    tan(θ2)=±(1cosθ)(1+cosθ)

                    Product-Sum Trigonometric Identities
                    The product-sum trigonometric identities change the sum or difference of sines or cosines into a product of sines and cosines.
                    sinA+sinB=2sin(A+B2)cos(AB2)
                    cosA+cosB=2cos(A+B2)cos(AB2)
                    sinAsinB=2cos(A+B2)sin(AB2)
                    cosAcosB=2sin(A+B2)sin(AB2)

                    Trigonometric Identities of Products
                    These identities are:
                    sinAsinB=cos(AB)cos(A+B)2
                    sinAcosB=sin(A+B)+sin(AB)2
                    cosAcosB=cos(A+B)+cos(AB)2

                    No comments:

                    Post a Comment

                    If you have any questions or uncertainties, please don't hesitate to ask.